Deep Sparse Representations for Land-Use Scene Classification in Remote Sensing Images

Fan Hu*, Gui-Song Xia*, Liangpei Zhang*
*Key State Laboratory LIESMARS, Wuhan University, China
†Electronic Information School, Wuhan University, China
Email: hfmelizabeth@gmail.com, guisong.xia@whu.edu.cn, zlp62@whu.edu.cn

Abstract—Land-use scene classification which provides high-level interpretation for remote sensing images is a challenging task, and the performance of this task mainly lies in the representative ability of extracted scene-level features. Motivated by the good generalization ability of deep convolutional neural network (CNN), we design a novel method, called deep sparse representation (DSR), building scene-level features via directly transferring CNN models pre-trained on general-purpose image dataset for land-use scene classification. We first extract deep CNN features in a feedforward way, and then compute sparse codes for the deep features through optimizing a sparse coding formulation; we finally max-pool the obtained sparse codes to form the image representations. Extensive experiments on a public land-use scene benchmark demonstrate that the image features generated by the proposed DSR, even with a simple linear classifier, can result in remarkable classification accuracies, which now become the new state-of-the-art performance on the benchmark.

Keywords: scene classification, CNN, sparse coding, feature representation

I. INTRODUCTION

Land-use scene classification [1]–[7] aims to address the problem of assigning the given land-use scene images into predefined semantically meaningful categories. In contrast to pixel-level or object-level classification, scene-level classification can provide high-level interpretation of remote sensing images. Here, the land-use scenes usually cover multiple land-cover types or ground objects which appear at different scales, orientations and lighting condition, and are organized in complex spatial distributions. These properties give rise to high intra-class variability and low inter-class diversity of land-use scenes, thus making scene classification a very difficult task.

Since the low-level image features that are usually used pixel-level or object-level classification only describe some attributes (e.g., structure, texture and color) of local regions and lack adequate representative ability, therefore building global image representations that can describe the scene-level semantic contents is highly required in scene classification task. Many researchers have proposed to incorporate spatial information into the popular bag-of-words (BOW) [2], [3], [8] model which represents an image as a histogram of local features. Due to the strong dependence upon the handcrafted local features of BOW model, some researchers resort to fully unsupervised feature learning methods to automatically learn mid- or high-level feature representations [4], [6], [9]–[11]. Very recently, the deep convolutional neural networks (CNN) have gained huge popularity in computer vision community due to their remarkable performance in challenging benchmarks of image classification, object detection and many other visual applications [12]–[14]. In the context of land-use scene classification, some works have been devoted to transferring the CNN models pre-trained on natural image dataset to land-use scene classification [15], [16], and confirmed that the deep CNN features can generalize well from general-purpose image domain to remote sensing image domain; in [17], it has been shown that applying specific fine-tuning strategy for pre-trained CNNs with the target data also results in impressive performance. Although these two works have reported state-of-the-art results on popular land-use benchmark, they only use the CNN features in a rudimentary fashion: directly extracting CNN features for the input image or simply adapting CNNs for classification by fine-tuning strategies. Therefore, more effective ways to exploit CNN features for land-use data are needed.

In this paper, we present a novel method, called deep sparse representation (DSR), constructing powerful image representation for scene classification based on transferring the pre-trained CNNs and the sparse coding model. We propose to utilize deep CNN features from convolutional layers instead of the features from fully-connected layers to build image representation, motivated by the insight that convolutional feature maps can harvest useful semantically-interpretable information. A pipeline of the DSR is illustrated in Fig. 1. We treat the convolutional features as dense local descriptors; and resort to the sparse coding method to generate high-level
image representations thanks to its powerful role in dictionary learning and feature encoding [18], [19]. Specifically, we first extract the CNN activations from the last convolutional layer of a pre-trained CNN by feeding an image scene, and then compute the sparse codes for these intermediate convolutional features. Finally, we integrate all the responses of sparse codes by max-pooling function to generate the resulting image representation. Extensive experiments on public land-use benchmark show that the proposed DSR working with simply linear support vector machine (SVM) classifier can achieve dramatically impressive performance, and establish new state-of-the-art performance.

II. Deep Sparse Representations

A. Convolutional Neural Networks (CNNs)

The latest generation of deep convolutional neural networks have attracted a lot of attention because of their high performance. The typical architecture of a CNN for image recognition is structured as multiple stacked stages. The first few stages consist of convolutional layers and pooling layers. The convolutional layer is implemented by convolving the input with a set of learnable filters, followed by a non-linear function, and generate a group of feature maps, each of which corresponds to the response of convolution between the input and a filter. The pooling layer takes each feature map from the convolutional layer, max-pool the feature maps within local regions and output a condensed (spatially downsampled) feature map. The fully-connected (FC) layer follows the last pooling, playing a role of high-level reasoning. A recently popular CNN architecture, CaffeNet [20], is illustrated in Fig. 2. The parameters of CNNs are trained with stochastic gradient descent to minimize the discrepancy between actual scores and the output scores for each training sample. The gradients with respect to the trainable parameters of each layer are computed with the classic backpropagation procedure.

In this paper, we explore four deep CNN models that have been pre-trained on ImageNet to extract CNN features, which are CaffeNet, VGG-M [13], VGG-VD16 [14] and VGG-VD19 [14]. The CaffeNet and VGG-M share the same “five convolutional layers+three FC layers”, but differ in number of filters, convolution stride and pooling size. VGG-VD16 and VGG-VD19 have very deep and homogeneous architecture with 16 and 19 weight layers, performing only 3×3 convolutions and 2×2 pooling. These networks are currently prevalent choices when extracting CNN features.

B. Deep Sparse Representations (DSR)

It has been discovered that activations (or features) of a deep CNN pre-trained on ImageNet can be successfully applied as generic image representations. A widely-used way of applying a pre-trained CNN to build image-level representations is to directly extract the activations from the first or second FC layer by taking the whole image as input and represent the image with the activations [13], [21]. However, the features of FC layers are very sensitive to translation, rotation and scaling [21], making them less applicable for land-use scenes that are greatly diverse in orientations and scales. Compared with the FC features that only encode semantic information, the convolutional feature maps preserve both semantic and spatial information which is helpful for recognizing land-use scenes. Some visualizations of the convolutional feature maps derived from different layers are shown in Fig. 3. We observe that even the feature maps of the last few deep layers are still semantically meaningful. Thus, we study to build the image representation by utilizing convolutional feature maps instead of the features of FC layers.

Given a pre-trained CNN \mathcal{N}, we remove all FC layers and output the feature maps of the last convolutional layer by feeding an input image into \mathcal{N}. The feature maps can be regarded as a 3-D array of size $h \times w \times K$, comprised of 2-D array of K-dimensional feature vectors, where h, w denote the
height and width of feature map and \(K\) denotes the number of feature maps. For instance, the last convolutional layer of the CaffeNet and VGG-VD19 respectively outputs 14 × 14 × 256 and 16 × 16 × 512 feature maps if input image size is 256 × 256, and thereby results in 256-dimensional and 512-dimensional deep features. Let the \(F^{(m)} = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{K \times N}\) the set of all convolutional features extracted from image \(I_m\), consisting of \(N \times K\)-dimensional features. Inspired by \cite{19, 23}, we resort to compute the sparse codes of the convolutional features, by solving the following optimization problem under the widely-used sparse coding framework:

\[
\min_{D, s_i} \sum_{i} \|Ds_i - x_i\|_2^2 + \lambda \|s_i\|_1
\]

\(s.t. \|d_k\|_2 \leq 1, \forall k = 1, 2, \ldots, L\)

where \(D = [d_1, d_2, \ldots, d_L] \in \mathbb{R}^{K \times L}\) is an overcomplete dictionary, i.e. \(L > K\); \(s_i\) that is a \(L\)-dimensional vector is the resulting sparse code with respect to the deep feature \(x_i\), and let the \(S^{(m)} = [s_1, s_2, \ldots, s_N] \in \mathbb{R}^{L \times N}\) denote the set of sparse codes of \(I_m\); \(\lambda\) is a regularization parameter that controls the sparsity of sparse vector \(s_i\). When the dictionary \(D\) is pre-learned and fixed, the optimization for \(s\) in Eq. (1) reduces to a standard Lasso problem, and thus we can efficiently generate sparse code for each deep feature of an image with an off-the-shelf solver. On the basis of sparse code set \(S^{(m)}\), the resulting image representation \(F\) for \(I_m\) is computed by max-pooling the absolute value of all sparse vectors in \(S^{(m)}\):

\[
F(p) = \max(|s_1(p)|, |s_2(p)|, \ldots, |s_N(p)|),
\]

where \(F(p)\) and \(s_i(p)\) is the \(p\)-th entry of vector \(F\) and \(s_i\). The max-pooling function which preserves the maximum response of coding vectors has been proved to be particularly suited to sparse features. To implement the scene classification, we finally combine the DSR with a linear SVM classifier.

It is worth noticing that without the FC layers (it is common knowledge that the requirement of fixed-size input comes from FC layers rather than convolutional layers), the input image of a CNN can be of any size or scales. Thus, we extract multi-scale convolutional activations by feeding input image of multiple size into the pre-trained CNN, and capture multi-scale information that are useful for depicting land-use scenes.

The feature set \(F\) accordingly contains deep features from all scales. The optimization for sparse codes and pooling stage remain unchanged.

C. Learning Dictionary

As described above, in the DSR, the deep convolutional features are encoded into sparse codes in terms of the dictionary \(D\) that is off-line learned, and thus representative ability of sparse codes has a close relationship with the dictionary. In this paper, we investigate three approaches for effectively learning the dictionary and compare the performance of them in Sec. III.

1) Natural Sparse Coding: An intuitive method of learning the dictionary is to iteratively optimizing Eq. (1) over \(D\) and sparse code \(s\) on a set of randomly sampled deep features. This way of learning dictionary is common practice in many sparse coding based applications, and naturally match the sparse coding phase. It is always effective and results in good performance. Thus, we take this approach as the default dictionary learning method in our experiments.

2) Orthogonal Matching Pursuit (OMP): By slightly modifying the object function of original sparse coding scheme, we would like to optimize a new minimization problem formulated as:

\[
\min_{D, s_i} \sum_{i} \|Ds_i - x_i\|_2^2
\]

\(s.t. \|d_k\|_2 = 1, \forall k = 1, 2, \ldots, L\)

\(\text{and } \|s_k\|_0 \leq n, \forall i\)

where \(\|s_k\|_0\) denotes the number of non-zero elements in vector \(s_k\). This problem replaces the \(\ell_1\)-norm regularization on \(s_k\) with a \(\ell_0\)-norm constraints on \(s_k\), and enforces \(s_k\) to have at most \(n\) non-zero elements. As with sparse coding, the problem can be readily solved by iteratively optimizing \(D\) or \(s\): given \(D\), the sparse code \(s_i\) are computed by OMP that greedily select the elements of \(s_i\) to be non-zero while minimizing the reconstruction error; given \(s_i\), a standard least square solver can be used to compute \(D\). In our experiments, we set \(n = 1\), and the problem turns to be very similar to K-means.

3) Random Features (RF): The dictionary can be also generated in a heuristic manner: we randomly sample \(L\) convolutional features from the feature set, and regard each of them as a basis vector \(d\). Thereby the dictionary is composed of a set of sampled features \(D = [x_1, x_2, \ldots, x_L] \in \mathbb{R}^{K \times L}\), where each feature is \(\ell_2\)-normalized. This is a simple baseline method of generating dictionary, requiring no training operations.

III. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

We evaluate the proposed DSR on the UC Merced dataset (UCM) \cite{1}, which is arguably the most popular land-use scene benchmark. It contains 21 distinctive scene categories, each of which consists of 100 image samples with size of \(256 \times 256\) pixels. Examples of each category are shown in Fig. 4.

The four deep pre-trained CNN models (available at Caffe Model Zoo\(^1\)) mentioned in Sec. II are evaluated. The CNN features are extracted from the last convolutional layer without ReLU transformation, and then \(\ell_2\)-normalized before generating sparse codes. In order to obtain multi-scale CNN features, the original image is rescaled by factor \(r\) (\(r\) times of the input size), where \(r \in \{0.5, 1.0, 2.0\}\). We use 100,000 deep features sampled from random images to train the dictionary \(D\) by solving Eq. (1). The dictionary size \(L\) and sparsity parameter \(\lambda\) is fixed to be 2048 and 0.3 by default. Following the consistent

\(^1\)https://github.com/BVLC/caffe/wiki/Model-Zoo
settings on the UCM dataset [1], we randomly select 80 training samples for training SVM classifier and the rest for testing. The final classification performance is measured by averaging accuracies of all classes over 50 runs. All experiments are implemented using open-source toolkits including: Caffe [20] for computing CNN features; SPAMS\(^2\) for learning dictionary and optimizing sparse codes; LIBLINEAR\(^3\) for SVM training and testing with linear kernel.

B. Experimental Results

We report some baseline results of our DSR with different pre-trained CNNs, and evaluate the effects of some hyper-parameters.

1) Effect of Dictionary Size: We first investigate the effect of dictionary size \(L\) to the DSR. In general, too small or too large dictionary size could degrade the discriminating ability of sparse features. Considering that the dimensions of deep features in our experiments are 256 or 512, to guarantee the overcomplete property of dictionary, we test five dictionary size: \(L = \{512, 1024, 2048, 4096, 8192\}\). The results are summarized in Table I. It can be observed that the performance of DSR marginally decreases when the dictionary size becomes too large. Otherwise, the two VGG-VD models achieve comparable performance, outperforming CaffeNet and VGG-M by an obvious margin.

2) Effect of Sparsity: As common knowledge, the sparsity parameter \(\lambda\) controls sparsity penalty: smaller \(\lambda\) will lead to less sparse vectors. As shown in Fig. 5, the performance of DSR consistently decreases as the \(\lambda\) grows; especially when \(\lambda \geq 0.7\), too far sparse features seriously lower performance of DSR. It is also interesting that less sparsity of CNN features does not always result in better performance; when \(\lambda = 0\), the performance of DSR degrades obviously. Thus based on the experiments, setting \(\lambda\) to be \(0.1 \sim 0.3\) is a reasonable choice.

3) Effect of Dictionary: We also evaluate the effect of dictionary created by OMP and RF on the final classification performance, keeping the other stage of DSR unchanged. As can be seen in Table II, the dictionary built by OMP or RF consistently results in slightly worse performance than the natural sparse coding. Nevertheless, when using the simplest RF to build dictionary, we can still achieve as high as approximate 97% accuracy. The surprising results suggest that the learned dictionary has little effect on DSR. Hence, we advocate using RF to generate dictionary in the DSR pipeline due to its simplicity and competitive performance with some complex dictionary learning strategies.

4) Comparison of State-of-the-art Methods: As shown in Table III, we compare the best result of DSR with several state-of-the-art methods which also present classification results on UCM dataset with following the same settings as [1]. There it can be seen that the DSR outperforms all the non-CNN based methods by a large margin. In contrast with approaches presented in [15] that likewise directly transfer pre-trained CNNs to extract features from FC layers, our DSR outperforms them with substantial gains more than 4%. This demonstrates that convolutional feature maps of a pre-trained CNN contains rich information and can form discriminative image representations if encoded in appropriate ways. Compared with approaches

Table I

<table>
<thead>
<tr>
<th>Size</th>
<th>CaffeNet</th>
<th>VGG-M</th>
<th>VGG-VD16</th>
<th>VGG-VD19</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>93.07±1.02</td>
<td>94.10±1.09</td>
<td>95.25±0.96</td>
<td>94.91±0.80</td>
</tr>
<tr>
<td>1024</td>
<td>95.44±0.94</td>
<td>95.92±1.12</td>
<td>96.77±0.73</td>
<td>96.65±0.72</td>
</tr>
<tr>
<td>2048</td>
<td>95.80±0.70</td>
<td>96.79±0.87</td>
<td>97.07±0.76</td>
<td>97.00±0.73</td>
</tr>
<tr>
<td>4096</td>
<td>95.98±0.86</td>
<td>97.20±0.69</td>
<td>97.40±0.69</td>
<td>97.47±0.75</td>
</tr>
<tr>
<td>8192</td>
<td>96.18±0.79</td>
<td>96.94±0.92</td>
<td>97.26±0.83</td>
<td>97.38±0.61</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Method</th>
<th>Size</th>
<th>CaffeNet</th>
<th>VGG-M</th>
<th>VGG-VD16</th>
<th>VGG-VD19</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMP</td>
<td>1024</td>
<td>94.30±1.09</td>
<td>95.80±0.92</td>
<td>96.26±0.76</td>
<td>95.88±0.89</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>95.11±1.01</td>
<td>96.37±0.85</td>
<td>96.72±0.79</td>
<td>96.67±0.92</td>
</tr>
<tr>
<td>RF</td>
<td>1024</td>
<td>95.27±0.89</td>
<td>95.78±0.86</td>
<td>96.27±0.63</td>
<td>95.74±0.83</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>95.28±1.00</td>
<td>96.22±0.92</td>
<td>96.48±0.76</td>
<td>96.97±0.73</td>
</tr>
</tbody>
</table>

\(^{2}\)http://spams-devel.gforge.inria.fr/

\(^{3}\)http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Fig. 4. Some examples from 21-class UCM dataset.

Fig. 5. Effects of sparsity parameter \(\lambda\) of DSR to classification accuracy on UCM dataset. The VGG-VD16 model is used here. We study the effect of sparseness of CNN features under two different dictionary size settings (\(L = 1024, 2048\)).
3-D visualization

BEACH M RES
END RES
INTER BUILD
OVER HARB
CHAP TENN GOLF
FREE PARK
AGRI MHP
RUN FOR RIV
P

New state-of-the-art baseline on the UCM dataset. In summary, the proposed DSR represents image approximate 100% (or exactly 100%) accuracy for most of classification confusion matrix of DSR. The DSR achieves of building very strong image representations for classification, explicit supervised training. This suggests that DSR is capable that are clearly separated (semantic segregation), even without that the image features naturally tend to form semantic clusters dimensional features on a low-dimensional space. It is obvious and introduce the t-SNE [24] approach to embed the high-
image representations for all images in UCM via DSR, representations generated by DSR: we achieve the resulting 6 shows the 2-D/3-D feature visualization of the final image though not applying any complex fine-tuning techniques. Fig. UCM, the DSR still achieves slightly better performance even in [17] that elaborately fine tune the pre-trained CNNs on UCM, the DSR still achieves slightly better performance even though not applying any complex fine-tuning techniques. Fig. 6 shows the 2-D/3-D feature visualization of the final image representations generated by DSR: we achieve the resulting image representations for all images in UCM via DSR, and introduce the t-SNE [24] approach to embed the high-dimensional features on a low-dimensional space. It is obvious that the image features naturally tend to form semantic clusters that are clearly separated (semantic segregation), even without explicit supervised training. This suggests that DSR is capable of building very strong image representations for classification, containing high-level semantic information. Fig. 7 presents the classification confusion matrix of DSR. The DSR achieves approximate 100% (or exactly 100%) accuracy for most of categories. In summary, the proposed DSR represents image scenes in a quite efficient way, and meanwhile has established new state-of-the-art baseline on the UCM dataset.

TABLE III
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS ON THE UCM DATASET.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCK [1]</td>
<td>72.52</td>
</tr>
<tr>
<td>SC+Pooling [4]</td>
<td>81.67±1.23</td>
</tr>
<tr>
<td>SG+UFL [5]</td>
<td>82.72±1.18</td>
</tr>
<tr>
<td>FBC [10]</td>
<td>85.53±1.24</td>
</tr>
<tr>
<td>CCM-BOVW [2]</td>
<td>86.64±0.81</td>
</tr>
<tr>
<td>PSR [3]</td>
<td>89.1</td>
</tr>
<tr>
<td>UFL-SC [6]</td>
<td>90.26±1.51</td>
</tr>
<tr>
<td>COPD [25]</td>
<td>91.33±1.11</td>
</tr>
<tr>
<td>CaffeNet [15]</td>
<td>93.42±1.00</td>
</tr>
<tr>
<td>OverFeat [15]</td>
<td>90.91±1.19</td>
</tr>
<tr>
<td>CNN with OverFeat feature [26]</td>
<td>92.4</td>
</tr>
<tr>
<td>Multiview deep learning [7]</td>
<td>93.48±0.82</td>
</tr>
<tr>
<td>CaffeNet+Fine-tune [17]</td>
<td>95.48</td>
</tr>
<tr>
<td>GoogLeNet+Fine-tune [17]</td>
<td>97.10</td>
</tr>
<tr>
<td>DSR(VGG-VD19)</td>
<td>97.47±0.75</td>
</tr>
</tbody>
</table>

Non-CNN Based

CNN Based

TABLE IV
PERFORMANCE OF SIMPLE BASELINE (WITHOUT SPARSE CODING OPERATION) ON UCM DATASET WHEN USING DIFFERENT CNN MODELS.

<table>
<thead>
<tr>
<th>Models</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaffeNet</td>
<td>93.38±0.95</td>
</tr>
<tr>
<td>VGG-M</td>
<td>94.47±1.01</td>
</tr>
<tr>
<td>VGG-VD16</td>
<td>95.09±0.90</td>
</tr>
<tr>
<td>VGG-VD19</td>
<td>95.11±0.95</td>
</tr>
</tbody>
</table>

C. Experiment Revisit

1) Effect of Sparse Encoding: In order to validate that the sparse coding phase is indeed capable of improving performance, we design a simpler pipeline to construct image representations: after extracting deep convolutional features from a pre-trained CNN, we discard the sparse coding procedure, and directly apply pooling function on the deep features, yielding the image representation. In this baseline experiments, we use average-pooling to generate final image representations which computes the element-wise mean value of deep feature vectors over the whole image (we have also tried the max-pooling function, but obtained worse accuracies). The results of this baseline are shown in Table. IV. As expected, the performance of this simple baseline is obviously lower than the DSR, with an accuracy gap ~2%. It reveals that the sparse coding scheme can extract salient properties of deep features, and map these non-linear separable deep features into a higher-dimensional feature space where sparse codes of features are readily linear separated. This advantage of sparse codes makes our DSR perform strikingly well with very simple linear SVM classifier.

2) Combining More Convolutional Features: In above experiments, we only utilize the deep features from the last convolutional layer of a pre-trained CNN and discard the feature response from other convolutional layers that contain abundant information of describing the whole image scene. In order to improve performance of DSR, we try to combine deep features of different convolutional layers within DSR framework to boost the final image representations. Specifically, we additionally obtain new image features by using exactly the same DSR pipeline over the features extracted from the convolutional layer right before the penultimate pooling.
layer of the pre-trained. The final image feature is obtained by concatenating the new image feature and the previous image feature. Table V shows the results of this tentative combination experiment. It can be seen that in contrast with Table. I, the combination consistently achieves a bit improvement. This demonstrates the effectiveness of this combination strategy, and we believe that the DSR can achieve much better performance when combining features from more convolution layers or even FC layers.

IV. CONCLUSION

In this paper, we introduce sparse coding model to unearth the discriminant power of CNN features. A simple but efficient pipeline, which explores the intermediate activations of CNNs incorporated into the sparse coding modeling, proposed for constructing image-level representations for land-use scenes. Remarkable performance on public land-use dataset show that 1) the CNNs pre-trained on general-purpose images generalize well to land-use scenes, even though not applying fine-tuning on the target dataset; 2) sparse modeling is helpful to construct effective representations of deep features. In future works, we plan to collect a sufficiently large-scale land-use scene dataset, and train a specific deep CNN that could be adapted to scene classification task.

REFERENCES

TABLE V

<table>
<thead>
<tr>
<th>CaffeNet</th>
<th>VGG-M</th>
<th>VGG-VD16</th>
<th>VGG-VD19</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.10±1.07</td>
<td>96.83±0.91</td>
<td>97.77±0.70</td>
<td>97.63±0.72</td>
</tr>
</tbody>
</table>